Вы здесь

Бетоны

Обшие сведения о бетоне
Материалы для изготовления бетона
Свойства бетонов
Марки и классы бетона

 

ПОЛНОЕ СОДЕРЖАНИЕ СТАТЬИ:

Основные характеристики бетонов

            Виды бетонов

Материалы для изготовления бетона

            Цемент

            Мелкий заполнитель (песок)

            Крупный заполнитель (гравий, щебень)

            Вода

           Добавки для бетонов

           Суперпластификаторы

Свойства бетонов

            Реологические свойства бетонной смеси

            Технические свойства бетонной смеси

            Удобоукладываемость

            Деформативные свойства бетонов

                       Усадка и набухание

                       Морозостойкость

                       Водонепроницаемость

                       Теплофизические свойства

Марки и классы бетона

            Однородность прочности и класс

            Тяжелый бетон

            Высокопрочный бетон

            Морозостойкий бетон

            Мелкозернистый бетон

            Легкий бетон

            Крупнопористый бетон

            Гипсобетон

            Ячеистый бетон

            Газобетон и газосиликат

            Пенобетон и пеносиликат

            Особые виды бетона

                        Гидротехнический бетон

                        Бетон внутренней зоны

                        Жаростойкий бетон

                        Кислотоупорный бетон

                        Бетон для защиты от радиоактивного воздействия

                        Серный бетон

                        Опилкобетон

Общие сведения о бетоне

Бетон на неорганических вяжущих веществах представляет собой композиционный материал, получаемый в результате формования и твердения рационально подобранной бетонной смеси, состоящей из вяжущего вещества, воды, заполнителей и специальных добавок.

Состав бетонной смеси должен обеспечить бетону к определенному сроку заданные свойства (прочность, морозостойкость, водонепроницаемость и др.)

Бетон является главным строительным материалом, который применяют во всех областях строительства.

Преимуществами бетона и железобетона являются: низкий уровень затрат на изготовление конструкций в связи с применением местного сырья, возможность применения в сборных и монолитных конструкциях различного вида и назначения, механизация и автоматизация приготовления товарного бетона и производства конструкций. Бетон при надлежащей обработке позволяет изготавливать конструкции оптимальной формы с точки зрения строительной механики и архитектуры. Бетон долговечен и огнестоек, его плотность, прочность и другие характеристики можно изменять в широких пределах и получать материал с заданными свойствами.

Недостатком бетона, как любого каменного материала, является низкая прочность на растяжение, которая в 10-15 раз ниже прочности на сжатие. Этот недостаток устраняется в железобетоне, когда растягивающие напряжения воспринимает арматура.

Близость коэффициентов температурного расширения и прочное сцепление обеспечивают совместную работу бетона и стальной арматуры в железобетоне, как единого целого. В силу этих преимуществ бетоны различных видов и железобетонные конструкции из них являются основой современного строительства.

Вверх

 

По виду вяжущего выделяют:

  • цементные (наиболее распространенные)
  • силикатные (известково-кремнеземистые)
  • гипсовые, смешанные (цементно-известковые, известково-шлаковые и т.п.),
  • специальные - применяемые при наличии особых требований (жаростойкости, химической стойкости и др.)

По виду заполнителя различают бетоны на: плотных, пористых, специальных заполнителях, удовлетворяющих специальным требованиям (защиты от излучений, жаростойкости, химической стойкости и т.п.).

В правильно подобранной бетонной смеси расход цемента составляет 8-15%, а заполнителей - 80-85% (по массе).

В виде заполнителей применяют местные каменные материалы: песок, гравий, щебень, а также побочные продукты промышленности (например, дробленные и гранулированные металлургические шлаки), характеризующиеся сравнительно невысоким уровнем издержек производства.

В зависимости от плотности различают бетоны:

  • особо тяжелые - плотностью более 2500 кг/м3, изготовляемые на особо тяжелых заполнителях (из магнетита, барита, чугунного скрапа и др.); эти бетоны применяют для специальных защитных конструкций;
  • тяжелые - плотностью 2200-2500 кг/м3 на песке, гравии или щебне из тяжелых горных пород; применяют во всех несущих конструкциях;
  • облегченные - плотностью 1800-2200 кг/м3; их применяют преимущественно в несущих конструкциях;
  • легкие - плотностью 500-1800 кг/м3; к ним относятся:
  • легкие бетоны на пористых природных и искусственных заполнителях;
  • ячеистые бетоны (газобетон и пенобетон) из смеси вяжущего, воды, тонкодисперсного кремнеземистого компонента и порообразователя;
  • крупнопористые (беспесчаные) бетоны на плотном или пористом крупном заполнителе без мелкого заполнителя;
  • особо легкие (ячеистые и на пористых заполнителях) - плотностью менее 500 кг/м, используемые в качестве теплоизоляции.

Вверх

 

Материалы для изготовления бетона

Цемент

Цемент - гидравлическое вяжущее вещество при перемешивании с водой и твердении в течение определенного срока на воздухе или под водой превращается в нерастворимый в воде материал. Для тяжелого бетона применяют портландцемент и его разновидности, а также глиноземистый цемент и другие вяжущие, отвечающие требованиям соответствующих ГОСТов. Марку цемента назначают в зависимости от проектной марки бетона по прочности при сжатии:

 

Марка
бетона

М150

М200

М250

М300

М350

М400

М450

М500

М600 и выше

Марка
цемента

М300

М300
М400

М400

М400
М500

М400
М500

М500
М600

М550
М600

М600

М600

 

Если марка цемента выше той, которая рекомендуется для данного бетона, то надо разбавить высокоактивный цемент тонкомолотой активной добавкой, чтобы избежать перерасхода высокомарочного цемента.

Вверх

 

Мелкий заполнитель

В качестве мелкого заполнителя в тяжелом бетоне применяют песок, состоящий из зерен размером 0,16-5 мм и имеющий плотность более 1,8 г/см3. Для приготовления тяжелых бетонов применяют природные пески, образовавшиеся в результате естественного разрушения горных пород, а также искусственные, полученные путем дробления твердых горных пород и из отсевов. Природные пески представляют рыхлую смесь зерен различных минералов, входивших в состав изверженных (реже осадочных) горных пород (кварца, полевого шпата, кальцита, слюды и др.).

Качество песка, применяемого для изготовления бетона, определяется минеральным составом, зерновым составом и содержанием вредных примесей.

Заполнитель должен состоять из зерен разного размера (разных фракций), при этом количество крупных, средних и мелких зерен (т.е. зерновой состав заполнителя) устанавливается на основе проверенных рекомендаций таким образом, чтобы зерна меньшего размера располагались в пустотах между крупными. Чем компактнее расположены зерна заполнителей, тем меньше объем пустот.

Зерновой (гранулометрический) состав песка определяют просеиванием высушенной средней пробы (1000 г) через стандартный набор сит с размерами отверстий 5; 2,5; 1,25; 0,63; 0,315; 0,16 мм. Мелкие частицы песка (пыль) имеют размер менее 0,16 мм. В песке зерен гравия от 5 до 10 мм допускается не более 5%, зерен крупнее 10 мм - не должно быть.

Для оценки крупности песка применяют безразмерный показатель - модуль крупности, который вычисляют как отношение суммы полных остатков на ситах, ко всей пробе, принятой за 100.

В зависимости от зернового состава песок разделяют на крупный, средний, мелкий

Мелкие частицы (пыль, ил, глина) увеличивают водопотребность бетонных смесей и расход цемента в бетоне. Поэтому содержание в песке зерен, проходящих через сито 0,16 мм, должно быть не более 10% по массе, при этом количество пылевидных, илистых и глинистых частиц, определяемых отмучиванием, не должно превышать 3%. Глина набухает при увлажнении и увеличивается в объеме при замерзании, снижая морозостойкость.

Песок очищают от мелких частиц путем промывки.

Классификация песков по крупности

Группа песков

Полный остаток на сите с сеткой
0,63 мм, %

Модуль крупности

Крупный

50-75

3,5-2,5

Средний

35-50

2,5-2

Мелкий

20-35

2-1,5

 

В природном песке и в гравии могут содержаться органические примеси (например, продукты разложения остатков растений), в частности, органические гумусовые кислоты, которые понижают прочность бетона и даже разрушают цемент. Наличие органических примесей определяют колориметрическим (цветовым) методом.

Вверх

 

Крупный заполнитель

В качестве крупного заполнителя для бетона применяют гравий, щебень с размером зерен 5-70 мм. При бетонировании массивных конструкций можно применять щебень крупностью до 150 мм.

Зерна гравия имеют окатанную форму и гладкую поверхность, личного зернового состава Обычно гравий содержит в том или ином количестве песок, а также вредные примеси - глину, пыль, слюду, гумусовые вещества (органические примеси).

Щебень получают дроблением изверженных, метаморфических, плотных и водостойких осадочных горных пород (плотных известняков, песчаников и др.). Зерна щебня имеют угловатую форму; желательно, чтобы по форме они приближались к кубу. Более шероховатая, чем у гравия, поверхность зерен способствует лучшему их сцеплению с цементным камнем, поэтому для бетона высокой прочности (М500 и выше) обычно применяют щебень, а не гравий.

Качество крупного заполнителя определяется минеральным составом и свойствами исходной породы (ее прочностью и морозостойкостью), зерновым составом заполнителя, формой зерен и содержанием вредных примесей.

Прочность исходной породы при сжатии в насыщенном водой состоянии должна не менее чем в 1,5-2 раза превышает марку бетона.

Морозостойкость щебня и гравия должна обеспечивать получение проектной марки бетона по морозостойкости. Установлены марки щебня и гравия по морозостойкости от 15 до 300. Марка обозначает число циклов попеременного замораживания и оттаивания, при котором потеря в массе пробы крупного заполнителя не превышает 5% (для марок 15 и 25 допускается потеря массы до 10%).

Зерновой состав крупного заполнителя устанавливают с учетом наибольшего D и наименьшего d размеров зерен щебня или гравия. Наибольший размер зерен при бетонировании железобетонных балок, колонн, рам должен быть не более наименьшего расстояния между стержнями арматуры, а для плит перекрытий и покрытий - не более толщины плиты. Наименьшая крупность соответствует размеру отверстия самого мелкого из сит, через которое проходит не более 5% просеиваемой пробы; обычно наименьшая крупность равна 5(3) мм.

В зависимости от крупности зерен щебень, гравий подразделяют на четыре фракции: 5-10 мм, 10-20 мм, 20-40 мм и 40-70 мм. Щебень, гравий могут поступать в виде смеси двух или большего числа фракций. По соглашению между поставщиком и потребителем может применяться щебень фракций 3-10 мм, 10-15 мм (или 5-15),15-20 мм. Зерновой состав каждой фракции или смеси фракций должен находиться в указанных ниже пределах.

Размер контрольных сит

d

0,5 (d+D)

d

1,25D

5(3) мм

10 мми более

для одной фракции

для смеси фракций

Полный остаток на ситах, % по массе

95-100

90-100

40-80

50-70

0-10

0

 

В зависимости от формы зерен устанавливается три группы щебня из естественного камня: кубовидная, улучшенная и обычная. Содержание зерен пластинчатой (лещадной) и игловатой формы в них не превышает соответственно 15, 25 и 35% по массе. К пластинчатым и игловатым зернам относят такие, в которых толщина или ширина меньше длины в 3 и более раза.

Содержание пылевидных и илистых частиц допускается в зависимости от вида исходной горной породы и марки щебня и гравия по прочности. Количество пылевидных, глинистых и илистых частиц, определяемое отмучиванием, в гравии и щебне допускается не более 1%.

Содержание органических примесей в крупном заполнителе проверяют, пользуясь той же методикой, которая применяется для песка. Гравий и щебень при обработке водным раствором едкого натра не должны придавать раствору окраску темнее эталона.

Вверх

 

Вода

Вода, применяемая для затворения бетонной смеси и поливки бетона, не должна содержать вредных примесей, препятствующих схватыванию и твердению вяжущего вещества. Для затворения бетонной смеси применяют водопроводную питьевую воду, а также природную воду (рек, естественных водоемов), имеющую водородный показатель рН не менее 4, содержащую не более 5600 мг/л минеральных солей, в том числе сульфатов не более 2700 мг/л . He допускается применять болотные, а также сточные бытовые и промышленные воды без их очистки.

Вверх

 

Добавки для бетонов

В зависимости от назначения (основного эффекта действия) добавки для бетонов подразделяют на виды:

  1. Регулирующие свойства бетонных смесей:
  2. пластифицирующие;
  3. стабилизирующие;
  4. водоудерживающие;
  5. улучшающие перекачиваемость;
  6. регулирующие сохраняемость бетонных смесей;
  7. замедляющие схватывание ускоряющие схватывание;
  8. поризующие (для легких бетонов): воздухововлекающие, пенообразующие, газообразующие
  9. Регулирующие твердение бетона:
  10. замедляющие твердение,
  11. ускоряющие твердение
  12. Повышающие прочность и (или) коррозионную стойкость, морозостойкость бетона и железобетона, снижающие проницаемость бетона: водоредуцирующие, кольматирующие, газообразующие, воздухововлекающие, повышающие защитные свойства бетона по отношению к стальной арматуре (ингибиторы коррозии стали).
  13. Придающие бетону специальные свойства:
  14. противоморозные (обеспечивающие твердение при отрицательных температурах);
  15. гидрофобизирующие.

Вверх

 

Суперпластификаторы

Суперпластификаторы в большинстве случаев представляют собой синтетические полимеры: производные меламиновой смолы или нафталинсульфокислоты (С-3); другие добавки (СПД, ОП-7 и др.) получены на основе вторичных продуктов химического синтеза. Суперпластификаторы, вводимые в бетонную смесь в количе­стве 0,15-1,2% от массы цемента, разжижают бетонную смесь в большей степени, чем обычные пластификаторы.

Пластифицирующий эффект сохраняется в течение 1-1,5 ч после введения добавки, а через 2-3 ч он уже невелик. В щелочной среде эти добавки переходят в другие вещества, безвредные для бетона и не снижающие его прочности.

Суперпластификаторы позволяют применять литьевой способ изготовления железобетонных изделий и бетонирования конструкций с использованием бетононасосов и трубного транспорта бетонной смеси. С другой стороны, эти добавки дают возможность существенно снизить В/Ц, сохраняя подвижность смеси, и изготовлять высокопрочные бетоны.

Вверх

 

Свойства бетона

Реологические свойства бетонной смеси

Бетонной смесью называют рационально составленную и тщательно перемешанную смесь компонентов бетона до начала процессов схватывания и твердения.

Состав бетонной смеси определяют, исходя из требований к самой смеси и к бетону.

Основной структурообразующей составляющей в бетонной смеси является цементное тесто.

Независимо от вида бетона бетонная смесь должна удовлетворять двум главным требованиям: обладать хорошей удобоукладываемостью, соответствующей применяемому способу уплотнения и сохранять при транспортировании и укладке однородность, достигнутую при приготовлении.

При действии возрастающего усилия бетонная смесь вначале претерпевает упругие деформации, когда же преодолена структурная прочность, она течет подобно вязкой жидкости. Поэтому бетонную смесь называют упруго-пластично-вязким телом, обладающим свойствами твердого тела и истинной жидкости.

Свойство бетонной смеси разжижаться при механических воздействиях и вновь загустевать в спокойном состоянии называется тиксотропией

Вверх

 

Технические свойства бетонной смеси

При изготовлении железобетонных изделий и бетонировании монолитных конструкций самым важным свойством бетонной смеси является удобоукладываемость (или удобоформуемость), т.е. способность заполнять форму при данном способе уплотнения, сохраняя свою однородность.

Для оценки удобоукладываемости используют три показателя:

  • подвижность бетонной смеси (П), являющуюся характеристикой структурной прочности смеси;
  • жесткость (Ж), являющуюся показателем динамической вязкости бетонной смеси;
  • связность, характеризуемую водоотделением бетонной смеси после ее отстаивания.

Подвижность бетонной смеси характеризуется измеряемой осадкой (см) конуса (ОК), отформованного из бетонной смеси, подлежащей испытанию. Подвижность бетонной смеси вычисляют как среднее двух определений, выполненных из одной пробы смеси. Если осадка конуса равна нулю, то удобоукладываемость бетонной смеси характеризуется жесткостью.

Жесткость бетонной смеси характеризуется временем (с) вибрирования, необходимым для выравнивания и уплотнения предварительно отформованного конуса бетонной смеси в приборе для определения жесткости.

Связность бетонной смеси обуславливает однородность строения и свойств бетона. Очень важно сохранить однородность бетонной смеси при перевозке, укладке в форму и уплотнении. При уплотнении подвижных бетонных смесей происходит сближение составляющих ее зерен, при этом часть воды отжимается вверх. Уменьшение количества воды затворения при применении пластифицирующих добавок и повышение водоудерживающей способности бетонной смеси путем правильного подбора зернового состава заполнителей являются главными мерами борьбы с расслоением подвижных бетонных смесей.

Вверх

 

Удобоукладываемость бетонной смеси

Количество воды затворения является основным фактором, определяющим удобоукладываемость бетонной смеси. Вода затворения (В, кг/м3) распределяется между цементным тестом (Вц) и заполнителем (Взап): В= Вц + Взап. Количество воды в цементном тесте определяют его реологические свойства: предельное напряжение сдвига и вязкость, а следовательно, и технические свойства бетонной смеси - подвижность и жесткость.

Водопотребность заполнителя Взап является его важной технологической характеристикой; она возрастает с увеличением суммарной поверхности зерен заполнителя и поэтому велика у мелких песков.

Для обеспечения требуемой прочности бетона величина водоцементного отношения должна сохраняться постоянной, поэтому возрастание водопотребности вызывает перерасход цемента. При мелких песках он достигает 15-25%, поэтому мелкие пески следует применять после обогащения крупным природным или дробленым песком и с пластифицирующими добавками, снижающими водопотребность.

Вверх

 

Деформативные свойства бетона

Под нагрузкой бетон ведет себя иначе, чем сталь и другие упругиe материалы. Конгломератная структура бетона определяет его поведение при возрастающей нагрузке осевого сжатия.

Область условно упругой работы бетона - от начала нагружения до напряжения сжатия, при котором по поверхности сцепления цементного камня с заполнителем образуются микротрещины.

Опыты подтвердили, что при небольших напряжениях и кратковременном нагружения для бетона характерна упругая деформация, подобная деформации пружины.

Модуль упругости бетона возрастает при увеличении прочности и зависит от пористости: увеличение пористости бетона сопровождается снижением модуля упругости.

При одинаковой марке по прочности модуль упругости легкого бетона на пористом заполнителе меньше в 1,7-2,5 раза тяжелого. Еще ниже модуль упругости ячеистого бетона. Таким образом, упругими свойствами бетона можно управлять, регулируя его структуру. Модуль упругости бетона при сжатии и растяжении принимают равными между собой:

Есж = Ер = Еб.

Ползучестью называют явление увеличения деформаций бетона во времени при действии постоянной статической нагрузки.

Ползучесть зависит от вида цемента и заполнителей, состава бетона, его возраста, условий твердения и влажности. Меньшая ползучесть наблюдается при применении высокомарочных цементов и плотного заполнителя - щебня из изверженных горных пород. Пористый заполнитель усиливает ползучесть, поэтому легкие бетоны имеют большую ползучесть по сравнению с тяжелыми.

Преждевременное высыхание бетона ухудшает структуру и увеличивает его ползучесть. Однако насыщение водой затвердевшего бетона может вызвать рост ползучести.

Ползучесть и связанная с ней релаксация напряжений может играть отрицательную роль. Например, ползучесть бетона приводит к потере натяжения; в предварительно напряженных железобетонных конструкциях.

Вверх

 

Усадка и набухание бетона

При твердении на воздухе происходит усадка бетона, т.е. бетон сжимается и линейные размеры бетонных элементов сокращаются. Усадка слагается из влажностной, карбонизационной и контракционной составляющих. Вследствие усадки бетона в железобетонных и бетонных конструкциях возникают усадочные напряжения, поэтому сооружения большой протяженности разрезают усадочными швами во избежание появления трещин. Ведь при усадке бетона 0,3 мм/м в сооружении длиной 30 м общая усадка составляет около 10 мм. Массивный бетон высыхает снаружи, а внутри он еще долго остается влажным. Неравномерная усадка вызывает растягивающие напряжения в наружных слоях конструкции и появление внутренних трещин на контакте с заполнителем и в самом цементном камне.

Для снижения усадочных напряжений и сохранения монолитности конструкций стремятся уменьшить усадку бетона. Наибольшую усадку имеет цементный камень. Введение заполнителя уменьшает количество вяжущего в единице объема материала, при этом образуется своеобразный каркас из зерен заполнителя, препятствующий усадке. Поэтому усадка цементного раствора и бетона меньше, чем цементного камня.

Бетон наружных частей гидротехнических сооружений, цементно-бетонных дорог периодически увлажняется и высыхает. Колебания влажности бетона вызывают попеременные деформации усадки и набухания, которые могут вызвать появление микротрещин и разрушение бетона.

Вверх

 

Морозостойкость бетона

Морозостойкость бетона определяют путём попеременного замораживания в холодильной камере при температуре от 15 до 20°С и оттаивания в воде при температуре 15-20°С бетонных образцов кубов с размерами ребра 10, 15 или 20 см (в зависимости от наибольшей крупности заполнителя). Образцы испытывают после 28 суток выдержки в камере нормального твердения или через 7 суток после тепловой обработки. Контрольные образцы, предназначенные для испытания на сжатие в эквивалентном возрасте, хранят в камере нормального твердения. Морозостойкость бетона зависит от качества примененных материалов и капиллярной, пористости бетона. Объем капиллярных пор оказывает решающее влияние на водопроницаемость и морозостойкость бетона. Морозостойкость бетона значительно возрастает, когда капиллярная пористость менее 7%.

Вверх

 

Водонепроницаемость бетона

С уменьшением объема капиллярных макропор снижается водонепроницаемость и одновременно повышается морозостойкость бетона. Для уменьшения водонепроницаемости в бетон при его изготовлении вводят уплотняющие (алюминат натрия) и гидрофобизующие добавки. Нефтепродукты (бензин, керосин и др.) имеют меньшее, чем у воды, поверхностное натяжение, поэтому они легче проникают через обычный бетон. Для снижения фильтрации нефтепродуктов в бетонную смесь можно вводить специальные добавки (хлорное железо и др.). Проницаемость бетона по отношению к воде и нефтепродуктам резко уменьшается, если вместо обычного портландцемента применяют расширяющийся.

Вверх

 

Теплофизические свойства бетона

Теплопроводность - наиболее важная теплофизическая характеристика бетона, в особенности применяемого в ограждающих конструкциях зданий.

Теплопроводность тяжелого бетона в воздушно-сухом состоянии 1,2 Вт/(м.°С), т.е. она в 2-4 раза больше, чем у легких бетонов (на пористых заполнителях и ячеистых). Высокая теплопроводность является недостатком тяжелого бетона. Панели наружных стен из тяжелого бетона изготавливают с внутренним слоем утеплителя.

Теплоемкость тяжелого бетона изменяется в узких пределах -0,75-0,92 Вт/(м. С°).

Линейный коэффициент температурного расширения бетона составляет около 0,00001 °С, следовательно, при увеличении температуры на 50 °С расширение достигает примерно 0,5 мм/м. Во избежание растрескивания сооружений большой, протяженности разрезают температурно-усадочными швами.

Крупный заполнитель и раствор, составляющие бетон, имеют различный коэффициент температурного расширения и будут по разному деформироваться при изменении температуры. Большие колебания температуры (более 80°С) смогут вызвать внутреннее растрескивание бетона вследствие различного теплового расширения крупного заполнителя и раствора. Характерные трещины распространяются по поверхности заполнителя, некоторые из них образуются в растворе, а иногда и в слабых зернах заполнителя. Внутреннее растрескивание можно предотвратить, если позаботиться о подборе составляющих бетона с близкими коэффициентами температурного расширения

Вверх

 

Марки и классы бетона

При проектировании бетонных и железобетонных конструкций назначают требуемые характеристики бетона: класс (марку) прочности, марки морозостойкости и водонепроницаемости.

За проектную марку бетона по прочности на сжатие принимают сопротивление осевому сжатию (кгс/см2) эталонных образцов-кубов.

За проектную марку бетона по прочности на осевое растяжение принимают сопротивление осевому растяжению (кгс/см2) контрольных образцов. Эта марка назначается тогда, когда она имеет главенствующее значение.

Проектная марка бетона по морозостойкости характеризуется числом циклов попеременного замораживания и оттаивания, которое выдерживают образцы в условиях стандартного испытания. Назначается для бетона, подвергающегося многократному воздействию отрицательных температур.

Проектная марка бетона по водонепроницаемости характеризуется односторонним гидростатическим давлением (кгс/см2), при котором образцы бетона не пропускают воду в условиях стандартного испытания. Назначается для бетона, к которому предъявляются требования по плотности и водонепроницаемости.

Проектную марку бетона по прочности на сжатие контролируют путем испытания стандартных бетонных образцов: для монолитных конструкций в возрасте 28 суток, для сборных конструкций - в сроки, установленные для данного вида изделий стандартом или техническими условиями.

Проектную марку бетона монолитных конструкций разрешается устанавливать при специальном обосновании в возрасте 90 или 180 суток в зависимости от сроков загружения, что позволяет экономить цемент.

Прочность бетона определяют путем испытания образцов, которые изготовляют сериями; серия, как правило, состоит из трех образцов.

Предел прочности при растяжении возрастает при повышении марки бетона по прочности при сжатии, однако увеличение сопротивления растяжению замедляется в области высокопрочных бетонов. Поэтому прочность бетона при растяжении составляет 1/10-1/17 предела прочности при сжатии, а предел прочности при изгибе - 1/6-1/10.

Вверх

 

Однородность прочности и класс бетона

Бетон должен быть однородным - это важнейшее техническое и экономическое требование. Для оценки однородности бетона данной марки используют результаты контрольных испытаний бетонных образцов за определенный период времени, имеется в виду, что стандартные образцы твердели в одинаковых условиях одно и то же время. Прочность бетонных образцов будет колебаться, отклоняясь от среднего значения в большую и меньшую стороны. На прочности сказываются колебания в качестве цемента и заполнителей, точность дозирования составляющих, тщательность приготовления бетонной смеси и другие факторы.

Для повышения однородности бетона необходимо применение цемента и заполнителей гарантированного качества, повышение уровня технологической дисциплины, автоматизация производства.

Следовательно, для нормирования прочности необходимо использовать стандартную характеристику, которая гарантировала бы получение бетона заданной прочности с учетом возможных ее колебаний. Такой характеристикой является класс бетона.

Класс бетона - это числовая характеристика какого-либо его свойства, принимаемая с гарантированной обеспеченностью 0,95. Это значит, что установленное классом свойство обеспечивается не менее чем в 95 случаях из 100 и лишь в 5-ти случаях можно ожидать его не выполненным.

Бетоны подразделяются на классы: В1; В1,5; В2; В2,5; В3,5; В5; В7,5; В10; В12,5; В15; В20; В25; В30; В40; В45; В50; В55; В60.

Соотношение между классом и марками бетона по прочности при нормативном коэффициенте вариации v = 13,5%

Класс бетона

Средняя прочность данного класса, кгс/кв.см

Ближайшая марка бетона

В3,5
В5
В7,5
В10
В12,5
В15
В20
В25
В30
В35
В40
В45
В50
В55
В60

46
65
98
131
164
196
262
327
393
458
524
589
655
720
786

М50
М75
М100
М150
М150
М200
М250
М350
М400
М450
М550
М600
М600
М700
М800

 

Твердение бетона

Прочность бетона нарастает в результате физико-химических процессов взаимодействия цемента с водой, которые нормально проходят в теплых и влажных условиях. Взаимодействие цемента с водой прекращается, если бетон высыхает или замерзает. Раннее высыхание и замерзание бетона непоправимо ухудшает его строение и свойства.

Бетон нуждается в уходе, создающем нормальные условия твердения, в особенности в начальный период после укладки (до 15-28 суток). В теплое время года влагу в бетоне сохраняют путем поливки и укрытия. На поверхность свежеуложенного бетона наносят битумную эмульсию или его укрывают полиэтиленовыми и другими пленками.

Характер нарастания прочности бетонов, изготовленных на портландцементе и твердевших в нормальных условиях (во влажном воздухе с температурой 18-22°С). Приближенно можно считать, что прочность бетона со временем увеличивается примерно по логарифмическому закону: Rn = R28(lgn / lg28), где Rn - прочность бетона в возрасте n сут (не менее трех суток); R28 - марка бетона; n - число дней твердения бетона. Эту формулу используют при ориентировочных расчетах времени распалубки.

Более точно прочность бетона в промежуточные сроки твердения определяется по опытной кривой нарастания прочности бетона, которая может быть построена по результатам испытания образцов 3, 7, 28, 90 - суточного возраста. Бетон при нормальных условиях твердения имеет низкую начальную прочность и только через 7-14 сут приобретает 60-80% марочной прочности

Марка бетона по морозостойкости

За марку бетона по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, которое при испытании выдерживают образцы установленных размеров без снижения прочности на сжатие более 5% по сравнению с прочностью образцов, испытанных в эквивалентном возрасте, а для дорожного бетона, кроме того, без потери массы более 5%. Установлены марки по морозостойкости: F50, F75, F100, F150, F200, F300, F400, F500.

Водонепроницаемость

По водонепроницаемости бетон делят на марки W2, W4, W6, W8 и W12, причем марка обозначает давление воды (кгс/см2), при котором образец-цилиндр высотой 15 см не пропускает воду в условиях стандартного испытания.

Вверх

 

Применение тяжелого бетона

Тяжелый бетон является основным видом бетона для железобетонных конструкций. Проектные марки тяжелого бетона по прочности на сжатие: М50, М75, М100, М150, М200, М250, М300, М350, М400, М450, М500, М600, М700, М800. Марки М250, М350 и М450 предусматривают при условии, что это приводит к экономии цемента. Бетоны высоких марок (М500-М800) нужны для предварительно напряженных железобетонных конструкций. При этом надо учесть, что бетон на плотном заполнителе имеет меньшую усадку и ползучесть по сравнению с легким бетоном на пористом заполнителе и ячеистым бетоном. Поэтому и потери предварительного напряжения арматуры при тяжелом бетоне меньше. Кроме того, он хорошо защищает стальную арматуру от коррозии, что особенно важно для предварительно напряженных конструкций, работающих в агрессивных условиях.

Вверх

 

Высокопрочный бетон

Высокопрочный бетон М600-М1000 получают на основе высокопрочного портландцемента, промытого песка и щебня не ниже М1200-М1400.

Малоподвижные и жесткие смеси приготовляют с низкими В/Ц = 0,27-0,45 в бетоносмесителях принудительного действия (например, турбинных). Для плотной укладки этих смесей при формовании изделий и конструкций используют интенсивное уплотнение: вибрирование с пригрузом, двойное вибрирование, сильное прессование. Значительно облегчают уплотнение суперпластификаторы, не понижающие прочности бетона.

Высокопрочные бетоны являются, как правило, и быстротвердеющими. Однако для ускоренного достижения отпускной прочности бетона в изделиях обычно требуется тепловая обработка, которая может проводиться по сокращенному режиму. Новые особо быстротвердеющие цементы дают возможность обойтись без тепловой обработки, так как бетон достигает нужной прочности в «естественных» условиях твердения при температуре 20-25°С.

Проектные марки тяжелого бетона по прочности на осевое растяжение: 10, 15, 20, 25, 30, 35, 40. Высокое сопротивление растяжению требуется от дорожного, аэродромного, гидротехнического и других специальных бетонов.

Тяжелый бетон хорошо сопротивляется поверхностному износу, что важно для цементно-бетонных дорог и полов промышленных зданий. Хорошие защитные свойства против радиоактивных излучений предопределяют его широкое применение в конструкциях биологической защиты атомных реакторов.

Проектные марки тяжелого бетона по морозостойкости: 50, 75, 100, 150, 200, 300, 400 и 500

Вверх

 

Бетоны высокой морозостойкости

Бетоны высокой морозостойкости применяют для тех частей сооружений, которые подвергаются многократному замораживанию и оттаиванию во влажном состоянии. Эта зона переменного уровня гидротехнических сооружений, конструкции железобетонных градирен, цементно-бетонные покрытия дорог и аэродромов и т.п.

Морозостойкость зависит от качества исходных материалов, состава бетона и тщательности производства работ, которые и определяют структуру бетона.

Рекомендуется применять сульфатостойкий портландцемент, являющийся одновременно и морозостойким.

Для повышения морозостойкости и водонепроницаемости бетона применяют добавки поверхностно-активных веществ.

Вверх

 

Мелкозернистый бетон

Мелкозернистый (цементный) бетон применяют при изготов­лении тонкостенных, в том числе армоцементных конструкций. Его целесообразно использовать и для обычных железобетонных конструкций, когда на месте нет крупного заполнителя, а возить заполнитель далеко и дорого. Мелкозернистый бетон отличается от обычного большим содержанием цементного камня, поэтому его усадка и ползучесть несколько выше.

Главные недостатки тяжелого бетона - большая плотность и высокая теплопроводность.

Вверх

 

Легкие бетоны

Бетоны на пористых заполнителях

Материалы для изготовления легкого бетона

Для легкого бетона используют быстротвердеющий и обычный портландцементы, а также шлакопортландцемент. Применяют в основном неорганические пористые заполнители. Для теплоизоляционных и некоторых видов конструкционно-теплоизоляционных легких бетонов используют и органические заполнители, приготовленные из древесины, стеблей хлопчатника, костры, гранулы пенополистйрола (стиропорбетон) и др.

Неорганические пористые заполнители отличаются большим разнообразием, их разделяют на природные и искусственные. Природные пористые заполнители получают путем частичного дробления и рассева или только рассева горных пород (пемзы, вулканического туфа, известняка-ракушечника и др.). Искусственные пористые заполнители являются продуктами термической обработки минерального сырья и разделяются на специально изготовленные и побочные продукты промышленности (топливные шлаки и золы, отвальные металлургические шлаки и др.).

Керамзитовый гравийполучают путем обжига гранул, приготовленных из вспучивающихся глин. Это легкий и прочный заполнитель насыпной плотностью 250-800 кг/м3. В изломе гранула керамзита имеет структуру застывшей пены. Спекшаяся оболочка, покрывающая гранулу, придает ей высокую прочность. Керамзит, обладающий высокой прочностью и легкостью, является основным видом пористого заполнителя. Керамзитовый песок (зерна до 5 мм) получают при производстве керамзитового гравия (правда, в небольших количествах), а также по методу кипящего слоя, обжигом глиняных гранул во взвешенном состоянии. Кроме того, его можно получать дроблением зерен гравия.

Шлаковую пемзуизготовляют путем быстрого охлаждения расплава металлургических (обычно доменных) шлаков, приводящего к вспучиванию. Куски шлаковой пемзы дробят и рассеивают, получая пористый щебень. Производство шлаковой пемзы распространено в районах развитой металлургией. Здесь себестоимость шлаковой пемзы ниже, чём керамзита.

Гранулированный металлургический шлакполучают в виде крупного песка с пористыми зернами размером 5-7 мм, иногда до 10 мм.

Вспученный перлитизготовляют путем обжига водосодержащих вулканических стеклообразных пород (перлитов, обсидианов). При температуре 950-1200°С вода выделяется и перлит увеличи­вается в объеме 10-20 раз. Вспученный перлит применяют, для производства легких бетонов и теплоизоляционных изделий.

Вспученный вермикулит- пористый сыпучий материал, полученный путем обжига водосодержащих слюд. Этот заполнитель используют для изготовления теплоизоляционных легких бетонов.

Топливные отходы (топливные шлаки и золы) образуются в качестве побочного продукта при сжигании антрацита, каменного угля, бурого угля и других видов твердого топлива. На основе золы выпускают зольный гравий.

Топливные шлаки - пористые кусковые материалы, получающиеся в топке в результате спекания и вспучивания неорганических (в основном глинистых) примесей, содержащихся в угле. Шлаки подвергаются частичному дроблению, рассеву и обогащению для удаления вредных примесей (несгоревшего угля, золы .и др.). на основе зол выпускают зольный и глинозольный гравий.

Аглопоритполучают при обжиге глиносодержащего сырья (с добавкой 8-10% топлива) на решетках агломерационных машин. Каменный уголь выгорает, а частицы сырья спекаются. Применяют местное сырье: легкоплавкие глинистые и лессовые породы, а также отходы промышленности - золы, топливные шлаки и угесодержащие шахтные породы. Аглопорит выпускают в виде пориотого песка, щебня и гравия.

Шунгизитизготовляют обжигом шунгитовых сланцевых пород.

Пористые заполнители, так же как и плотные, делят на крупные (пористый гравий или щебень) с размером кусков 5-40 мм и мелкие (пористый песок), состоящие из частиц менее 5 мм. Пористый песок рассеивают на две фракций: до 1,2мм (мелкий песок) и 1,2-5 мм (крупный песок). Пористый щебень (гравий) следует разделять на фракции - 5-10, 10-20, 20-40 мм. По насыпной плотности в сухом состоянии (кг/м3) пористые заполнители разделяют на марки 250..... 1100.

Свойства легкого бетона

Качество легкого бетона оценивают двумя важнейшими показателями: классом по прочности и маркой по средней плотности. Легкий бетон плотной структуры по прочности на сжатие (МПа) имеет классы: В2,5...В40, по прочности на осевое растяжение (МПа) -В0,8...В3,2. Для теплоизоляционных бетонов предусматриваются классы: В0.35, В0,75, В1. Для легких бетонов запроектированных без учета классов, показатели прочности (кг/см2) характеризуют марками: М35-М500.

Для изготовления высокопрочных легких бетонов (имеющих плотность 1600-1800 кг/м3) применяют более прочный пористый заполнитель (с насыпной плотностью 600-800 кг/м3), а пористый песок частично или полностью заменяют плотным.

В зависимости от плотности в сухом состоянии (кг/м3) легкие бетоны подразделяются на марки: Д200...Д2000.

Наиболее важной наряду с прочностью характеристикой легкого бетона является плотность. В зависимости от назначения легкие бетоны делят на следующие группы: теплоизоляционные с плотностью до 500 кг/м3; конструкционно-теплоизоляционные (для ограждающих конструкций - наружных стен, покрытий зданий) с плотностью 500-1400 кг/м3; конструкционные с плотностью 1400-1800 кг/м3.

Уменьшить плотность легких бетонов можно путем образования в цементном камне мелких замкнутых пор. Для поризации цементного камня, являющегося самой тяжелой составной частью легкого бетона, используют небольшие количества пенообразующих или газообразующих веществ.

Теплопроводность легких бетонов зависит в основном от плотности и влажности. Увеличение объемной влажности легкого бетона на 1% повышает теплопроводность на 0,016-0,035 Вт/(м.°С). В зависимости от теплопроводности легкого бетона толщина наружной стены может изменяться от 20 до 40 см. Наружные ограждающие конструкции из легких бетонов подвергаются воздействию попеременного замораживания и оттаивания, увлажнения и высыхания. Поэтому легкие бетоны, применяемые для наружных стен, покрытий зданий, а также для конструкций мостов, гидротехнических сооружений, должны обладать определенной морозостойкостью.

По морозостойкости легкие бетоны делят на марки: F25... F500; по водонепроницаемости W0,2...W1,2. Для наружных стен обычно применяют бетоны с морозостойкостью не менее 15-25 циклов попеременного замораживания и оттаивания. Возможность получения легких бетонов с высокой морозостойкостью и малой водопроницаемостью значительно расширяет области их применения. Бетоны на пористых заполнителях уже успешно используют в мостостроении, гидротехническом строительстве.

Водонепроницаемость плотных конструкционных легких бетонов может быть высокой. Керамзитобетон с расходом цемента 300-350 кг/м3 не пропускает воду даже при давлении 2 МПа. Малая водопроницаемость плотных легких бетонов подтверждается долголетней эксплуатацией возведенных из них гидротехнических сооружений (например, в Армении и Грузии), а также испытанием напорных железобетонных труб. Характерно, что со временем водонепроницаемость легких бетонов повышается.

Вверх

 

Крупнопористый бетон

В состав крупнопористого (беспесчаного) бетона входят гравий или щебень крупностью 5-20 мм, портландцемент или шлакопортландцемент МЗОО-М400 и вода. За счет исключения песка из состава крупнопористого бетона его плотность уменьшается примерно на 600-700 кг/мЗ и составляет 1700-1900 кг/м3. Отсутствие песка и ограниченный расход цемента (70-150 кг/м3) позволяют получить пористый бетон с теплопроводностью 0,55-0,8 Вт/(м-°С) и марками М15-М75. Крупнопористый бетон целесообразно применять в районах богатых гравием. Из крупнопористого бетона возводят монолитные наружные стены зданий, изготовляют крупные стеновые блоки. Стены из крупнопористого бетона оштукатуривают с двух сторон, чтобы устранить продувание.

Крупнопористый бетон на пористом заполнителе (керамзитовом гравии и т.п.) имеет небольшую плотность (500-700 кг/м3) и используется как теплоизоляционный материал.

Вверх

 

Гипсобетон

Гипсобетон изготовляют на основе строительного гипса, высокопрочного гипса и гипсоцементнопуццоланового вяжущего, обеспечивающего получение водостойких изделий. Для уменьшения плотности стремятся применять пористые заполнители (топливные шлаки, керамзитовый гравий, шлаковую пемзу и т.п.), а также комбинированный заполнитель из кварцевого песка и древесных пилок. С этой целью вводят породообразующие добавки, позволяющие снизить плотность гипсобетона. Для повышения прочности на изгиб и уменьшения хрупкости в состав гипсобетона вводят волокнистые наполнители (древесные волокна, измельченную бумажную массу и т.п.).

Крупноразмерные изделия изготовляют способом непрерывного вибропроката на специальных станах. Отформованные затвердевшие изделия высушивают в сушильных камерах.

Плотность гипсобетонов в зависимости от применяемого заполнителя и водогипсового отношения составляет 1000-1600 кг/м3, а марки М25 и М50.

Гипсобетон широко применяют для изготовления сплошных и пустотелых плит перегородок. Плиты можно армировать штукатурной дранью, камышом и т.п. Стальная арматура (проволока) должна быть защищена от коррозии специальной обмазкой (цементно-казеиновой, битумной или полимерной). На водостойком гипсоцементнопуццолановом вяжущем изготовляют мелкие камни и крупные блоки для внутренних и наружных стен жилых, сель­скохозяйственных производственных зданий с относительной влажностью помещений до 75%.

Вверх

 

Ячеистые бетоны

Ячеистые бетоны являются разновидностью легкого бетона, его получают в результате затвердевания вспученной при помощи порообразователя смеси вяжущего, кремнеземистого компонента и воды. При вспучивании исходной смеси образуется характерная «ячеистая» структура бетона с равномерно распределенными по объему воздушными порами. Благодаря этому ячеистый бетон имеет небольшую плотность и малую теплопроводность.

Пористость ячеистого бетона сравнительно легко регулировать в процессе изготовления, в результате получают бетоны разной плотности и назначения.

Ячеистые бетоны делят на три группы: теплоизоляционные плотностью в высушенном состоянии не более 500 кг/м3; конструкционно-теплоизоляционные (для ограждающих конструкций) плотностью 500-900 кг/м3; конструкционные (для железобетона) плотностью 900-1200 кг/м3.

Материалы для ячеистого бетона

Вяжущим для цементных ячеистых бетонов обычно служит портландцемент.

Бесцементные ячеистые бетоны (газо- и пеносиликат) автоклавного твердения изготовляют, применяя молотую негашеную известь.

Вяжущее применяют совместно с кремнеземистым компонентом, содержащим двуоксид кремния. Кремнеземистый компонент (молотый кварцевый песок, зола-унос ТЭС и молотый гранулированный доменный шлак) уменьшают расход вяжущего, усадку бетона и повышают качество ячеистого бетона. Кварцевый песок обычно размалывают мокрым способом и применяют в виде песчаного шлама. Измельчение увеличивает удельную поверхность кремнеземистого компонента и повышает его химическую активность.

Возрастает применение побочных продуктов промышленности (зола-уноса, доменных шлаков, нефелинового шлама) для изготовления ячеистого бетона.

Вспучившие теста вяжущего может осуществляться двумя способами: химическим, когда в тесто вяжущего вводят газообразующую добавку и в смеси происходят химические реакции, сопровождающиеся выделением газа; механическим, заключа­ющимся в том, что тесто вяжущего смешивают с отдельно приготовленной устойчивой пеной.

В зависимости от способа изготовления ячеистые бетоны делят на газобетон и пенобетон. У нас и за рубежом развивается производство преимущественно газобетона. Его технология более проста и позволяет получить материал пониженной плотности со стабильными свойствами. Пена же не отличается стабильностью, что вызывает колебания плотности и прочности пенобетона.

Свойства ячеистого бетона

Прочность и плотность являются главными показателями качества ячеистого бетона. Плотность, колеблющаяся от 300 до 1200 кг/м3, косвенно характеризует порис­тость ячеистого бетона (соответственно 85-60%).

Установлены следующие марки ячеистых бетонов по прочности при сжатии: М15, М25, М35, М50, М75, М100, М150. Классы по прочности на сжатие находятся в пределах ВО,35...В12,5.

Водопоглощение и морозостойкость зависят от величины и характера пористости ячеистого бетона и плотности перегородок между макропорами (ячейками). Для снижения водопоглощения и повышения морозостойкости стремятся к созданию ячеистой структуры с замкнутыми порами. Этому способствует вибрационная технология, так как при вибрации газобетонной смеси разрушаются крупные ячейки, снижающие морозостойкость и однородность материала.

Установлены следующие марки ячеистого бетона по морозостойкости: F15, F25, F35, F50, F75, F100. Для панелей наружных стен применяют ячеистый бетон марок F15, F25 в зависимости от влажности атмосферы в помещениях и климатических условий. Более высокая морозостойкость требуется от конструкционного ячеистого бетона, подвергающегося многократному замораживанию и оттаиванию.

Теплопроводность ячеистого бетона зависит от плотности и влажности, например при плотности 600 кг/м3, теплопроводность в сухом состоянии 0,14Вт/(м•°С), при влажности 8%-0,22 Вт/(м•°С).

Усадка зависит от состава ячеистого бетона, плотности и условий твердения. Ячеистый бетон плотностью 700-800 кг/м3 в воздухе с 70-80%-ной относительной влажностью и температурой 20°С имеет усадку 0,4-0,6 мм/м.

Применяют ячеистые бетоны для легких железобетонных конструкций и теплоизоляции. Широко распространены конструкционно-теплоизоляционные ячеистые бетоны. Из них изготовляют панели наружных стен и покрытий зданий, неармированные стеновые и теплоизоляционные блоки, камни для стен.

Конструкции из ячеистых бетонов долговечны в зданиях с сухим и нормальным режимами помещений при относительной влажности воздуха 60-70%.

Вверх

 

Газобетон и газосиликат

Газобетон приготовляют из смеси портландцемента (часто с добавкой воздушной извести или едкого натра), кремнеземистого компонента и газообразователя.

По типу химических реакций газообразователи делят на следующие виды: вступающие в химические взаимодействие с вяжущим или продуктами его гидратации (алюминиевая пудра); разлагающиеся с выделением газа (пергидроль); взаимодействующие между собой и выделяющие газ в результате обменных реакций (например, молотый известняк и соляная кислота).

Чаще всего газообразователем служит алюминиевая пудра, которая, реагируя с гидратом окиси кальция, выделяет водород.

Литьевая технология предусматривает отливку изделий, как Правило, в отдельных формах из текучих смесей, содержащих до 50-60% воды от массы сухих компонентов (водотвердое отношение В/Т = 0,5-0,6). При изготовлении газобетона применяемые материалы - вяжущее, песчаный шлам и вода, дозируют и подают в самоходный газобетоносмеситель, в котором их перемешивают 4-5 мин; затем в приготовленную смесь вливают водную суспензию алюминиевой пудры и после последующего перемешивания теста с алюминиевой пудрой газобетонную смесь заливают в металлические формы на определенную высоту с таким расчетом, чтобы после вспучивания формы были заполнены доверху. Избыток смеси («горбушку») после схватывания срезают проволочными струнами. Для ускорения газообразования, а также процессов схватывания и твердения применяют «горячие» смеси на подогретой воде с температурой в момент заливки в формы около 40°С.

Тепловую обработку бетона производят преимущественно в автоклавах в среде насыщенного водяного пара при температуре 175-200°С и давлении 0,8-1,3 МПа.

Вибрационная технология газобетона заключается в том, что во время перемешивания в смесителе и вспучивания в форме смесь подвергается вибрации. В смеси, подвергающейся вибрированию, ускоряется газовыделение - вспучивание заканчивается в течение 5-7 мин вместо 15-20 мин при литьевой технологии. После прекращения вибрирования газобетонная смесь быстро (через 0,5-1,5 ч) приобретает структурную прочность, позволяющую разрезать изделие на блоки, время автоклавной обработки также сокращается.

Резательная технология изготовления изделий из ячеистого бетона предусматривает формование вначале большого массива (объемом 10-12 м3, высотой до 2 м). После того как бетон наберет структурную прочность, массив разрезают в горизонтальном и вертикальном направлениях на прямоугольные элементы, а затем подвергают тепловой обработке. Полученные элементы калибруют на специальной фрезерной машине, а затем отделывают их фасадные поверхности. Из готовых элементов, имеющих точные размеры собирают на клею плоские или объемные конструкции, используя стяжную арматуру. Таким путем получают большие стеновые панели размером на одну или две комнаты и высотой на этаж.

Газосиликат автоклавного твердения в отличие от газобетона изготовляют на основе известково-кремнеземистого вяжущего, используя местные дешевые материалы - воздушную известь и песок, золу-унос и металлургические шлаки.

Изделия из газосиликата приобретают нужную прочность и морозостойкость только после автоклавной обработки, обеспечивающей химическое взаимодействие между известью и кремнеземистым компонентом и образование нерастворимых в воде гидросиликатов кальция.

Вверх

 

Пенобетон и пеносиликат

Пенобетон приготовляют, смешивая раздельно приготовленные растворную смесь и пену, образующую воздушные ячейки. Растворную смесь получают из вяжущего (цемента или воздушной извести) кремнеземистого компонента и воды, как и в технологии газобетона.

Пену приготовляют в лопастных пеновзбивателях или центробежных насосах из водного раствора пенообразователей, содержащих поверхностно-активные вещества. Применяют клееканифольный, смолосапоииновый, алюмосульфо-нафтеновый и синтетические пенообразователи. Стабилизаторами пены служат добавки раствора животного клея, жидкого стекла или сернокислого железа; минерализаторами же являются цемент и известь.

Пеносиликат, как и газосиликат, изготовляют на основе известково-кремнеземистого вяжущего.

Вверх

 

Особые виды бетона

Гидротехнический бетон

Гидротехнический бетон предназначается для конструкций, находящихся в воде или периодически соприкасающихся с водой, поэтому он должен обладать свойствами, необходимыми для длительной нормальной службы этих конструкций в данных климатических и эксплуатационных условиях.

Гидротехнический бетон должен иметь минимальную стоимость и удовлетворять требованиям по прочности, долговечности, водостойкости, водонепроницаемости, морозостойкости, тепловыделению при твердении, усадке и трещиностойкости. Противоречивые на первый взгляд требования высокого качества и низкой стоимости можно выполнить, если выделить наружную зону массивного сооружения, подвергающуюся непосредственному влиянию среды, и внутреннюю зону.

Бетон наружной зоны в зависимости от расположения в сооружении по отношению к уровню воды делят на бетон подводный (находящийся постоянно в воде), переменного уровня воды и надводный, находящийся выше уровня воды.

В самых суровых условиях бетон, расположенный в области переменного уровня воды, многократно замерзает и оттаивает, находясь все время во влажном состоянии. Это же относится к бетону водосливной грани плотин, морских сооружений (причалов, пирсов, молов и т.д.), градирен, служащих для охлаждения оборотной воды на тепловых электростанциях, предприятиях металлургической и химической промышленности. Этот бетон должен обладать высокой плотностью и морозостойкостью.

Вверх

 

Бетон внутренней зоны

Бетон внутренней зоны массивных конструкций защищен наружным бетоном от непосредственного воздействия среды. Главное требование к этому бетону - минимальная величина тепловыделения при твердении, так как неравномерный разогрев массива может вызвать образование температурных трещин. Малое тепловыделение имеет шлакопортландцемент, поэтому его и применяют для внутримассивного бетона наряду с пуццолановым портландцементом. Требования к физико-механическим свойствам бетона внутренней зоны не столь высоки: марки по прочности М100, М150, по водонепроницаемости W2, W4.

Марку бетона по водонепроницаемости назначают в зависимости от напорного градиента, равного отношению максимального напора к толщине конструкции или к толщине бетона наружной зоны конструкции (при наличии зональной разрезки):

Напорный градиент до 55-1010-1212 и более

Марка бетона по водонепроницаемостиW4W6W8W12

Для конструкций с напорным градиентом более 12 на основании опытов могут назначаться марки по водонепроницаемости выше W12.

Стойкость бетона к воздействиям среды определяется комплексом его свойств: морозостойкостью, малым водопоглощением, небольшими деформациями усадки.

Марку бетона по морозостойкости назначают в зависимости от климатических условий и числа расчетных циклов попеременного замораживания и оттаивания в течение года. Установлены следующие марки гидротехнического бетона по морозостойкости: F100, F150, F200, F300, F400, F500.

Водопоглощение гидротехнического бетона характеризуется величиной капиллярной всасываемости при погружении в воду образцов 28-суточного возраста, высушенных до постоянной массы при температуре 105°С.

Водопоглощение бетона зоны переменного уровня воды не должно превышать 5% от массы высушенных образцов), для бетонов других зон - не более 7%.

Линейная усадка бетона при относительной влажности воздуха 60% и температуре 18°С в возрасте 28 сут не превышает 0,3 мм/м, в возрасте 180 суток - 0,7 мм/м. Предельно допустимые величины набухания установлены: в возрасте 28 сут - 0,1 мм/м, 180 сут -0,3 мм/м (по сравнению с высушенными до постоянной массы при 60°С эталонными образцами).

Вверх

 

Жаростойкий бетон

Жаростойкий бетон предназначается для промышленных агрегатов (облицовки котлов, футеровки печей и т.п.) и строительных конструкций, подверженных нагреванию (например, для дымовых труб). При действии высокой температуры на цементный камень происходит обезвоживание кристаллогидратов и разложение гидроксида кальция с образованием СаО. Оксид кальция при воздействии влаги гидратируется с увеличением объема и вызывает растрескивание бетона. Поэтому в жаростойкий бетон на портландцементе вводят тонко измельченные материалы, содержащие активный кремнезем.

Жаростойкий бетон изготовляют на портландцементе с активной минеральной добавкой (пемзы, золы, доменного гранулированного шлака, шамота).

Шлакопортландцемент уже содержит добавку доменного гранулированного шлака и может успешно применяться при температурах до 700°С. Портландцемент и шлакопортландцемент нельзя применять для жаростойкого бетона, подвергающегося кислой коррозии (например, действию сернистого ангидрида в дымовых трубах). В этом случае следует применить бетон на жидком стекле. Он хорошо противостоит кислотной коррозии и сохраняет свою прочность при нагреве до 1000°С.

Еще большей огнеупорностью (не ниже 1580°С) обладает высокоглиноземистый цемент с содержанием глинозема 65-80%; в сочетании с высокоогнеупорным заполнителем его применяют при температурах до 1700°С.

Столь же высокой огнеупорности позволяют достигнуть фосфатные и алюмофосфатные связующие: фосфорная кислота алюмофосфаты и магнийфосфаты.

Жаростойкие бетоны на фосфатных связующих можно применять при температурах до 1700°С, они имеют небольшую огневую усадку, термически стойки, хорошо сопротивляются истиранию.

Заполнитель для жаростойкого бетона должен быть не только стойким при высоких температурах, но и обладать равномерным температурным расширением.

Бескварцевые изверженные горные породы как плотные (сиенит, диорит, диабаз, габбро), так и пористые (пемза, вулканические туфы, пеплы) можно использовать для жаростойкого бетона, применяемого при температурах до 700°С.

Для бетона, работающего при температурах 700-900°С, целесообразно применять бой обычного глиняного кирпича и доменные отвальные шлаки с модулем основности не более 1, не подверженные распаду.

При более высоких температурах заполнителем служат огнеупорные материалы: кусковой шамот, хромитовая руда, бой шамотных, хроммагнезитовых и других огнеупорных изделий.

Вверх

 

Кислотоупорный бетон

Вяжущим для кислотоупорного бетона является жидкое стекло с полимерной добавкой. Для повышения плотности бетона вводят наполнители: кислотостойкие минеральные порошки, получаемые измельчением чистого кварцевого песка, андезита, базальта, диабаза и т.п. В качестве отвердителя используют кремнефтористый натрий, в качестве заполнителя - кварцевый песок, щебень из гранита, кварцита, андезита и других стойких пород. После укладки с вибрированием бетон выдерживает не менее 10 сут на воздухе (без поливки) при 15-20°С. После отвердения рекомендуется поверхность бетона «окислить», т.е. смочить раствором серной или соляной кислот. Кислотоупорный бетон хорошо выдерживает действие концентрированных кислот; вода разрушает его за 5-10 лет, щелочные растворы разрушают быстрее. Кислотоупорный бетон применяют в качестве защитных слоев (футеровок) по железобетону и металлу.

Вверх

 

Бетон для защиты от радиоактивного воздействия

Материалы, применяемые для сооружения бетонной защиты, должны обеспечить возможно большую плотность бетона и определенное содержание водорода - обычно в виде воды, связанной с вяжущим.

Вяжущим служит портландцемент или шлакопортландцемент, который выделяет при гидратации немного тепла и поэтому хорошо зарекомендовал себя в массивных защитных конструкциях.

В качестве заполнителей используют тяжелые природные или искусственные материалы. Для особо тяжелого бетона применяют в качестве заполнителя близкие по своим свойствам железные руды - магнетит и гематит с содержанием железа не менее 60%. Бурый железняк (лимонит) позволяет значительно повысить содержание связанной воды в гидратном бетоне.

Баритовые руды (или барит), содержащие около 80% сульфата бария, применяют как мелкий и крупный заполнитель. Металлический крупный заполнитель получают из отходов металлообрабатывающихзаводов, мелким заполнителем служит кварцевый или лимонитовый песок, а также чугунная дробь. Свинцовая дробь дорогая и ее применяют при малой толщине защиты, для заделки отверстий в конструкциях, когда требуется бетон с повышенными защитными свойствами. Плотность бетона на металлическом заполнителе достигает 6000 кг/м3.

Бетон должен иметь заданную марку по прочности и относительно низкий модуль упругости, что позволяет снизить величину растягивающих напряжений во внешней зоне защиты, вызываемых односторонним нагревом. Кроме того, бетон, расположенный у активного корпуса реактора, должен обладать достаточной стойкостью к воздействию излучений, быть огнестойким и жаростойким даже при температурах, возможных при аварийном режиме реактоpa. Для массивных конструкций желательно меньшая теплота гидратации цемента и минимальная усадка бетона (для предотвращения температурных и усадочных трещин), а также небольшая величина коэффициента температурного расширения.

Вверх

 

Серный бетон

Серный бетон представляет собой смесь сухих заполнителей -щебень, песок, минеральная мука, нагретых до 140-150°С, и расплавленного серного вяжущего при температуре перемешивания 145-155°С. Использование серы в строительстве известно с середины прошлого века: в виде растворов и мастик для заливки швов каменных кладок, для заделки металлических стоек перил лестничных маршей и заделки металлических связей каменных конструкций взамен расплавленного свинца.

Процесс получения серного бетона основан на свойстве серы изменять свою вязкость при различной температуре - при 1,19-122°С сера полностью переходит из кристаллического состояния в расплав. В качестве заполнителей используют кислотоупорный цемент, андезитовую или кварцевую муку, кварцевый песок и другие кислотостойкие минеральные наполнители. Во многих странах серный бетон применяют для изготовления свай, фундаментов, емкостей, покрытий дорог и химстойких полов.

Вверх

 

Опилкобетон

Опилкобетон состоит из древесных опилок, песка, вяжущих (цемент и известь) и воды. По санитарно-гигиеническим показателям он считается одним из самых подходящих стеновых материалов. Плотность опилкобетона в основном определяется соотношением опилок и песка. Чем меньше песка, тем меньше плотность опилкобетона и лучше теплотехнические свойства, однако при этом снижается его прочность. Прочность опилкобетона повышается с увеличением количества вяжущего и песка. Поэтому к выбору состава опилкобетона следует подходить дифференцированно, в зависимости от требуемых свойств бетонируемой конструкции (количество этажей, наружная или внутренняя стена, толщина стены, несущая конструкция и т.д.).

Рецептов для приготовления опилкобетона очень много.

Очень хороший теплоизоляционный материал плотностью примерно 400 кг/м° можно получить из порошковой извести, опилок и воды. Отношение известкового порошка и опилок следует принимать ориентировочно 1:1 (в частях по массе), а отношение воды и вяжущего — 2. Теплопроводимость такого материала примерно в 15 раз ниже, чем у каменной кладки, и в 2 раза меньше, чем у фибролита.

Опилкобетон получают следующим образом. Сначала на деревянный щит насыпают необходимое количество песка, добавляют смесь цемента и извести и все тщательно перемешивают, пока смесь не станет однородной. Затем добавляют соответствующее количество опилок и снова перемешивают. Продолжая перемешивание, массу равномерно увлажняют.

2. На 1  м    опилкобетона берется 250...350 п воды. Нижняя граница

относится к более тяжелым бетонам (М 25), а верхняя     к легким (М 5).

Количество   воды   удобно   определить экспериментальным  путем.  Оно должно   быть   таким,   чтобы   при   сжатии   свежеприготовленная   смесь сохраняла форму: но не выделяла воду.

3. Опилкобетон марки 5 можно использовать только как теплоизоляцнонныл материал;   10 - для наружных стен одноэтажных зданий с мансардой,  несущих  внутренних   капитальных стен, выравнивающего слоя нал фундаментами, под мауэрлатом И цр.; 25     для наружных стен двух

этажных  зданий, несущих   внутренних  капитальных  стен, а также для неотапливаемых опилок поливают раствором цемента и извести и тщательно перемешивают до получения однородной густой массы.

Приготовление опилкобетона вручную — очень трудоемкий процесс, поэтому по возможности надо использовать бетоно  или растворосмесители.

Опилкобетон можно пилить, обрабатывать топором и долотом, а также можно вбивать в него гвозди.

Свежие опилки из древесины хвойных пород можно использовать без предварительной обработки, а старые, долго пролежавшие, и те, которые во время эксплуатации могут быть подвергнуты действию влаги, следует обработать 10%-м раствором хлорида кальция или известковым молоком, высушить и еще раз обработать раствором жидкого стекла (1:7) или битумной эмульсией.

Вверх